Comonadic Evaluation applications in Cellular Automata

Madalina Sas (madalina.sas@pm.me)
Advanced Haskell
April 2020
github.com/mearlboro/hascell

Outline

Motivation: Cellular Automata The numbering system: Wolfram Codes Worldbuilding: List Zippers
Modelling repeated computation: Comonads
Future work

Haskell Topics

- Bitwise operations: Data.Bits and Data.Bits.Bitwise
- Integer to/from bitstream representation
- Functors and Lists: the Functor class
- List Zippers
- Monads: Control.Monad
- Comonads: Control.Comonad

Useful Prerequisites

- Expressions, Functions, and Types
- Lists and List Comprehensions
- Higher-order Functions
- Currying and Partial Application
- Laziness
- Algebraic Data Types
- Classes and Instances
- Knowledge of Functors and Monads is recommended but not essential

Recommended Reading

- Paul Hudak, The Haskell School of Expression
- Bryan O'Sullivan, Don Stewart, John Goerzen, Real World Haskell
- Learn You a Haskell for Greater Good, Zippers
- Learn You a Haskell for Greater Good, A fistful of Monads
- Stephen Wolfram, Statistical mechanics of cellular automata
- Stephen Wolfram, $\underline{\text { A new kind of science }}$

The libraries are documented on Hackage:

- Data.Bits
- Data.Bits.Bitwise
- Control.Comonad

Motivation

Cellular Automata

Cellular Automata (CA)

- A system of simple, spatially distributed, identical agents
- Follow rules of evolution over discrete time steps
- Usually interact based on their topology, i.e. the state of one cell is influenced by the state of neighbouring cells
- Simple models with complex dynamics e.g. chaotic behaviour
- Applications in encryption and computation theory due to their randomness or complexity

Elementary

- 1-dimensional
- 2 states: alive, dead
- 4 'classes' of behaviour

Game of Life

- 2-dimensional
- 2 states: alive, dead
- Turing complete

Excitable Medium

- 2-dimensional
- 3 states: excitable, excited, refractory
- Brains, hearts, forest fires

Elementary Cellular Automata (ECA)

- Courtesy of Stephen Wolfram
- The simplest cellular automaton:
- 1 dimension
- 2 possible states: 0 and 1
- each cell has 2 neighbours: evolution rules operate with 3 cells at a time
- Don't be fooled by its simplicity...
- Some ECA are so non-periodic and chaotic they can be used to generate random numbers for encryption: rule $22,30,86,135$

- Some are fractal: rule 90 starting from a single live cell is the Sierpinski triangle. Other examples are rule $129,146,150,153$
- Some live between order and chaos: rule 110 , 124, 137 can be used to simulate any possible algorithm, like a Turing machine

* the plots above have been generated using the code presented in this lecture

Created or Discovered?

Rule 30
Conus Textile shell

The Numbering System Wolfram Codes

Wolfram Codes

- A system of generating all possible CA rules for this configuration
- For each cell n in generation G, its value is computed based on the values itself and its neighbours had in the previous generation

$$
\operatorname{val}(n, G)=\mathrm{f}(\operatorname{val}(n-1, G-1), \operatorname{val}(n, G-1), \operatorname{val}(n+1, G-1))
$$

- $2^{2^{3}}=2^{8}=256$ possible functions $\mathrm{f}:\{0,1\} \times\{0,1\} \times\{0,1\} \rightarrow\{0,1\}$
- The corresponding Wolfram Code is the 8 -bit number with the binary expansion that represents f

The sequence of 256 possible cellular automaton rules of the kind shown above. As indicated, the rules can conveniently be numbered from 0 to 255. The number assigned is such that when written in base 2, it gives a sequence of 0's and 1's that correspond to the sequence of new colors chosen for each of the eight possible cases covered by the rule.

.
-

Implementation: List Comprehension

- First try: list comprehension

```
wolframRule :: Int -> [Int]
wolframRule r = [ (r `div` 2`i) `mod` 2 | i <- [0..7] ]
```

- What about datatypes?
- an Int is much bigger than 8-bit word we need (Tip: Data.Word)
- the result is a list of 0 and 1
wolframRule :: Word8 -> [Bool]
wolframRule r = [(r `div` 2^i) `mod` 2 != 0 | i <- [0..7]]

Implementation: Binary expansions

- How do we elegantly turn a 1-bit Int into Bool? The answer is Data.Bits. Given a number (expressed as an array of bits) and an integer n, testBit returns the value of the nth least significant bit testBit :: Bits a => a -> Int -> Bool
- There exists a Bits instance of Word8, which allows us to use Word8 directly with testBit. The :i command will show you all instances of a datatype
λ Data.Word> :i Word8
instance Bits Word8 -- Defined in 'GHC.Word'
wolframRule :: Word8 -> [Bool]
wolframRule $r=[$ testBit $r i \operatorname{i}<-[0 . .7]$]
- The list comprehension is better expressed as a map
- We already know how many bits the Wolfram Code r has from its data type, so the magic number 7 is redundant wolframRule $r=\operatorname{map}(t e s t B i t r)[0 . . f i n i t e B i t S i z e r-1]$
- finiteBitSize : : FiniteBits b => b -> Int returns the number of bits required to represent its input argument

Worldbuilding

 List Zippers
1-Dimensional Universe

- An infinite line made of discrete 'points' or cells
- We only care about a finite subset of our universe, so we can be lazy
- We could use an infinite list, but then we'd have to traverse it
- For every computational step, focus is on 3 cells only. All computations are local
- Interested in the idea of local context, rather than global context; relative positioning rather than absolute positioning

The KING'S eyes
much larger than the reality shewing that HIS MAJESTTI could see nothing but a point.

Local Computations

- Can we write the following global computation as a local computation?

$$
\operatorname{val}(n, G)=\mathrm{f}_{\mathrm{r}}(\operatorname{val}(n-1, G-1), \operatorname{val}(n, G-1), \operatorname{val}(n+1, G-1))
$$

- Considering a focus cell, c, and generation G :

$$
\mathrm{c}_{G}=\mathrm{f}_{\mathrm{r}}\left(\operatorname{left}\left(\mathrm{c}_{G-1}\right), \mathrm{c}_{G-1}, \operatorname{right}\left(\mathrm{c}_{G-1}\right)\right)
$$

Zippers

- A zipper is an idiom that uses the idea of context to the means of manipulating locations in a data structure
- Idea: a list zipper would have a focus on a certain element and have two sub-lists, one to its left, one to its right

```
data W a = W [a] a [a]
```


NAVIGATING Zippers

- Need to locally navigate the data structure
- Jump left or right, get back the data structure with the focus element shifted in the respective direction

```
data W a = W [a] a [a]
left, right :: W a -> W a
left (W (l:ls) x rs ) = W ls l (x:rs)
right (W ls x (r:rs)) = W (x:ls) r rs
```


Functors

- Remember functors?

```
class Functor f where
fmap :: (a -> b) -> f a -> f b
```


- Functors represent types that can be mapped over
- Must preserve identity and composition
fmap id = id
fmap (f . g) = fmap f . fmap g

List Zippers are Functors

- Lists are functors:

```
instance Functor [] where
    fmap = map
```

- Since list zippers are lists with a focus element, functions can be mapped over the list zipper W using fmap, so they are functors too instance Functor W where

```
    fmap f (W ls x rs) = W (fmap f ls) (f x) (fmap f rs)
```

- fmap is needed to apply our evolution rules over each cell

Working with Context

- Need a way to extract the focus element from the zipper

```
extract :: W a -> a
extract (W _ x _) = x
```

- Evolution rules have the same type: take a zipper with the current generation of cells, return the next state of the specific cell that is the focus element
- After applying a rule, the focus cell is taken out of context. Need to put it back without losing the information about the other cells.
- For each cell: look-behind at a zipper and compute a new value
- For each generation: look-behind at a zipper of zippers, by changing the focus element to every cell in the zipper, and compute a new zipper
- Idea: a function to wrap the context into another context
- The aim is to obtain the id function when composing the two functions

```
extract :: W a -> a
wrap :: W a -> W (W a)
id :: W a -> W a
```

- wrap creates a zipper of zippers:
- The focus element is the original zipper, with its focus element set
- The left and right lists are made of copies of the original zipper by repeatedly shifting the focus element left and right

wrap : : W a -> W (W a)
wrap $\mathrm{w}=\mathrm{W}$ (tail (iterate left w) w (tail (iterate right w))

```
extract :: W a -> a
wrap :: W a -> W (W a)
```

- Using these two functions, we can now apply a function rule to the zipper and get back also a zipper

```
rule :: W a -> a
apply :: (W a -> a) -> W a -> W a
```

- Take a rule and a zipper that represents the current generation, get a zipper that represents the next generation:

```
apply rule w = fmap rule (wrap w)
```


Adapting Rules

- Any rule can be applied on a 8-bit number using its Wolfram Code r wolframRule $\mathrm{r}=\mathrm{map}($ testBit r$)$ [0..finiteBitSize $\mathrm{r}-1$]
- To apply it to a zipper w, construct the 8 -bit number represented by the focus cell and its neighbours

```
wolframRule r w = testBit r (2^0 * lc + 2^1 * cc + 2^2 * rc)
    where
    cc = fromEnum (extract w)
    lc = fromEnum (extract (left w))
    rc = fromEnum (extract (right w))
```

- Need a function like the 'opposite' of testBit that returns an integer given its binary expansion. Found in Data.Bits.Bitwise
λ Data.Bits Data.Bits.Bitwise> :t fromListBE fromListBE :: Bits b => b -> Int
- extract from the zipper in which the current cell is in focus and the zippers in which its two neighbours are in focus: left w, w, right w
- The result of extract is a list of Bool to pass to fromListBE

```
wolframRule :: Word8 -> W Bool -> Bool
wolframRule r w
    = testBit r (fromListBE (map extract [left w, w, right w]))
```

- wolframRule can now be used with apply to create the next generation

```
generation :: Word8 -> W a -> W a
generation r w = apply (wolframRule r) w
```

- Can repeat the computation as many times we want, and every time it returns a zipper. Take the first g computations and get a list of zippers that represent all generations $[0,1, \ldots$ g-1]

```
experiment :: Word8 -> W a -> Int -> [W a]
experiment r w g
    = take g (iterate (generation r w))
```


Infinite Laziness

- Our one-dimensional world is lazily generated. An initial world, with a single living cell in the middle, can be (lazily) defined as follows:

```
wolframWorld :: W a
wolframWorld = (repeat False) True (repeat False)
```

- experiment produces a list of zippers, but we must truncate them before attempting to print

```
truncateD :: Int -> W a -> W a
truncateD d (W ls x rs) = W (take d ls) x (take d rs)
```


Modelling Repeated Computation Comonads

Monads

- Remember monads?
class Monad m where

```
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
```

- A monad encapsulates a value (or values) a inside a context m
- The only way to access the value inside is through a continuation, that is, by binding it to an operation that accepts a value and produces an encapsulated value

Monads are Functors too

- All monads are functors. To construct a monad from a functor:
class Functor m => Monad m where

```
join :: m (m a) -> m a
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b
```

- Now bind (>>=) can be defined in terms of fmap and join:
ma

$$
\gg=f=j o i n(f m a p f m a)
$$

Comonads

- Compare the list zipper with the monad:

```
extract:: W a -> a
wrap :: W a -> W (W a)
apply ::(W a -> a) -> W a -> W a (>>=) :: m a -> (a -> m b) -> m b
```

- The list zipper above is the opposite (or categorical dual) of a monad, and is called a comonad
- The comonad puts forward the value it contains, and requires a continuation to access the rest of its context, by extending it with an operation that takes an encapsulated value and produces a value

Closing Thoughts

- The comonad lives in the Control.Comonad package
- Its 'official' function names are extract, duplicate (for wrap) and extend (for apply)
- Its full definition derives a Functor
- There are many possible instances of a comonad, which are more efficient than infinite lists

Possible Improvements?

- Some cellular automata live on toroidal worlds, which are not supported by a stream-like infinite list zipper
- Lists need to be traversed in order to save the results of an experiment, but lists are very inefficient to index $-O(n)$
- Since the computation is always local, it could be done in parallel
- What would the automaton look like if it were started from a more random initial configuration?
- How would a list zipper extend to 2 dimensions? Can we use it to implement Game of Life?
- Can we create a comonad for any number of dimensions?

What is Life?

John Conway's Game of Life

In memoriam of John Horton Conway, FRS 26 December 1937 - 11 April 2020

