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Haskell Topics

● Bitwise operations: Data.Bits and Data.Bits.Bitwise
● Integer to/from bitstream representation 
● Functors and Lists: the Functor class
● List Zippers
● Monads: Control.Monad
● Comonads: Control.Comonad



  

Useful Prerequisites

● Expressions, Functions, and Types
● Lists and List Comprehensions
● Higher-order Functions
● Currying and Partial Application
● Laziness
● Algebraic Data Types
● Classes and Instances
● Knowledge of Functors and Monads is recommended but not essential



  

Recommended Reading
● Paul Hudak, The Haskell School of Expression
● Bryan O'Sullivan, Don Stewart, John Goerzen, Real World Haskell
● Learn You a Haskell for Greater Good, Zippers
● Learn You a Haskell for Greater Good, A fistful of Monads
● Stephen Wolfram, Statistical mechanics of cellular automata
● Stephen Wolfram, A new kind of science

The libraries are documented on Hackage:
● Data.Bits
● Data.Bits.Bitwise
● Control.Comonad

https://www.amazon.co.uk/Haskell-School-Expression-Functional-Programming
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/zippers
http://learnyouahaskell.com/a-fistful-of-monads
https://www.stephenwolfram.com/publications/academic/statistical-mechanics-cellular-automata.pdf
https://www.wolframscience.com/nks/
https://hackage.haskell.org/package/base-4.2.0.1/docs/Data-Bits.html
https://hackage.haskell.org/package/bitwise-0.1.1.1/docs/Data-Bits-Bitwise.html
https://hackage.haskell.org/package/comonad-5.0.6/docs/Control-Comonad.html


  

Motivation
Cellular Automata



  

Cellular Automata (CA)

● A system of simple, spatially distributed, identical agents 
● Follow rules of evolution over discrete time steps
● Usually interact based on their topology, i.e. the state of one cell is 

influenced by the state of neighbouring cells
● Simple models with complex dynamics e.g. chaotic behaviour
● Applications in encryption and computation theory due to their 

randomness or complexity



  

Elementary  
● 1-dimensional
● 2 states: alive, dead
● 4 ‘classes’ of behaviour

Game of Life    
● 2-dimensional
● 2 states: alive, dead
● Turing complete

Excitable Medium
● 2-dimensional
● 3 states: excitable, excited, 

refractory
● Brains, hearts, forest fires



  

Elementary Cellular Automata (ECA)

● Courtesy of Stephen Wolfram
● The simplest cellular automaton: 

● 1 dimension
● 2 possible states: 0 and 1
● each cell has 2 neighbours: evolution rules operate with 3 cells at a 

time

● Don’t be fooled by its simplicity…



  

● Some ECA are so non-periodic and chaotic 
they can be used to generate random 
numbers for encryption: rule 22, 30, 86, 135

● Some are fractal: rule 90 starting from a 
single live cell is the Sierpinski triangle. 
Other examples are rule 129, 146, 150, 153

● Some live between order and chaos: rule 110, 
124, 137 can be used to simulate any possible 
algorithm, like a Turing machine



  
* the plots above have been generated using the code presented in this lecture



  

              Rule 30     Conus Textile shell

Created or Discovered?



  

The Numbering System
Wolfram Codes



  

Wolfram Codes

● A system of generating all possible CA rules for this configuration 
● For each cell n in generation G, its value is computed based on the 

values itself and its neighbours had in the previous generation

val(n, G) = f(val(n-1, G-1), val(n, G-1), val(n+1, G-1))
● 2 =28=256 possible functions  f: {0,1} x {0,1} x {0,1} → {0,1}
● The corresponding Wolfram Code is the 8-bit number with the binary 

expansion that represents f 

23



  
illustration © A New Kind of Science, Stephen Wolfram



  

Implementation: List Comprehension

● First try: list comprehension

wolframRule :: Int -> [Int]
wolframRule r = [ (r `div` 2^i) `mod` 2 | i <- [0..7] ] 

● What about datatypes? 
● an Int is much bigger than 8-bit word we need (Tip: Data.Word) 
● the result is a list of 0 and 1

  wolframRule :: Word8 -> [Bool]
  wolframRule r = [(r `div` 2^i) `mod` 2 != 0 | i <- [0..7]]



  

● How do we elegantly turn a 1-bit Int into Bool? The answer is 
Data.Bits. Given a number (expressed as an array of bits) and an 
integer n, testBit returns the value of the nth least significant bit 

testBit :: Bits a => a -> Int -> Bool
● There exists a Bits instance of Word8, which allows us to use Word8 

directly with testBit. The :i command will show you all instances of 
a datatype

 Data.Word> :i Word8λ Data.Word> :i Word8
instance Bits Word8 -- Defined in ‘GHC.Word’

Implementation: Binary expansions



  

wolframRule :: Word8 -> [Bool]
wolframRule r = [ testBit r i | i <- [0..7] ]

● The list comprehension is better expressed as a map
● We already know how many bits the Wolfram Code r has from its 

data type, so the magic number 7 is redundant

wolframRule r = map (testBit r) [0..finiteBitSize r-1]
● finiteBitSize :: FiniteBits b => b -> Int returns the number of 

bits required to represent its input argument



  

Worldbuilding
List Zippers



  

1-Dimensional Universe

● An infinite line made of discrete ‘points’ or cells
● We only care about a finite subset of our universe, so we can be lazy
● We could use an infinite list, but then we’d have to traverse it
● For every computational step, focus is on 3 cells only. All 

computations are local
● Interested in the idea of local context, rather than global context; 

relative positioning rather than absolute positioning



  
illustration © Flatland, Edwin C. Abbot



  

Local Computations

● Can we write the following global computation as a local computation?

  val(n, G) = fr(val(n-1, G-1), val(n, G-1), val(n+1, G-1))

● Considering a focus cell, c, and generation G:

          cG = fr(left(cG-1), cG-1, right(cG-1))



  

Zippers
● A zipper is an idiom that uses the idea of context to the means of 

manipulating locations in a data structure
● Idea: a list zipper would have a focus on a certain element and have 

two sub-lists, one to its left, one to its right

data W a = W [a] a [a]



  

Navigating Zippers

● Need to locally navigate the data structure
● Jump left or right, get back the data structure with the focus element 

shifted in the respective direction

data W a = W [a] a [a]
left, right :: W a -> W a
left  (W (l:ls) x    rs ) = W    ls  l (x:rs)
right (W    ls  x (r:rs)) = W (x:ls) r rs



  

Functors

● Remember functors? 

class Functor f where
  fmap :: (a -> b) -> f a -> f b

● Functors represent types that can be mapped over
● Must preserve identity and composition

fmap id = id
fmap (f . g) = fmap f . fmap g



  

List Zippers are Functors
● Lists are functors:

instance Functor [] where
  fmap = map

● Since list zippers are lists with a focus element, functions can be 
mapped over the list zipper W using fmap, so they are functors too

instance Functor W where
  fmap f (W ls x rs) = W (fmap f ls) (f x) (fmap f rs)

● fmap is needed to apply our evolution rules over each cell



  

● Need a way to extract the focus element from the zipper

extract :: W a -> a
extract (W _ x _) = x

● Evolution rules have the same type: take a zipper with the current 
generation of cells, return the next state of the specific cell that is the 
focus element

● After applying a rule, the focus cell is taken out of context. Need to 
put it back without losing the information about the other cells. 

Working with Context



  

● For each cell: look-behind at a zipper and compute a new value
● For each generation: look-behind at a zipper of zippers, by changing 

the focus element to every cell in the zipper, and compute a new zipper
● Idea: a function to wrap the context into another context
● The aim is to obtain the id function when composing the two functions

extract :: W a -> a        extract . wrap = id
wrap    :: W a -> W (W a)            wrap . extract = id
id      :: W a -> W a



  

● wrap creates a zipper of zippers:
● The focus element is the original 

zipper, with its focus element set
● The left and right lists are made 

of copies of the original zipper 
by repeatedly shifting the focus 
element left and right

wrap :: W a -> W (W a)
wrap w = W (tail (iterate left w)) w (tail (iterate right w)) 



  

extract ::  W a -> a   
wrap    ::  W a -> W (W a)

● Using these two functions, we can now apply a function rule to the 
zipper and get back also a zipper

rule    ::  W a -> a   
apply   :: (W a -> a) -> W a -> W a

● Take a rule and a zipper that represents the current generation, get a 
zipper that represents the next generation: 

apply rule w = fmap rule (wrap w)



  

Adapting Rules
● Any rule can be applied on a 8-bit number using its Wolfram Code r 

wolframRule r = map (testBit r) [0..finiteBitSize r-1]

● To apply it to a zipper w, construct the 8-bit number represented by 
the focus cell and its neighbours

wolframRule r w = testBit r (2^0 * lc + 2^1 * cc + 2^2 * rc)
  where 

cc = fromEnum (extract w)
lc = fromEnum (extract (left  w))
rc = fromEnum (extract (right w))



  

● Need a function like the ‘opposite’ of testBit that returns an integer 
given its binary expansion. Found in Data.Bits.Bitwise

 Data.Bits Data.Bits.Bitwise> :t fromListBEλ Data.Word> :i Word8

fromListBE :: Bits b => b -> Int 

● extract from the zipper in which the current cell is in focus and the 
zippers in which its two neighbours are in focus: left w, w, right w 

● The result of extract is a list of Bool to pass to fromListBE

wolframRule :: Word8 -> W Bool -> Bool 
wolframRule r w 
  = testBit r (fromListBE (map extract [left w, w, right w]))



  

● wolframRule can now be used with apply to create the next generation

generation :: Word8 -> W a -> W a
generation r w = apply (wolframRule r) w 

● Can repeat the computation as many times we want, and every time it 
returns a zipper. Take the first g computations and get a list of zippers 
that represent all generations [0, 1, … g-1] 

experiment :: Word8 -> W a -> Int -> [W a]
experiment r w g 
  = take g (iterate (generation r w))



  

● Our one-dimensional world is lazily generated. An initial world, with a 
single living cell in the middle, can be (lazily) defined as follows:

wolframWorld :: W a
wolframWorld = (repeat False) True (repeat False)

● experiment produces a list of zippers, but we must truncate them 
before attempting to print

truncateD :: Int -> W a -> W a
truncateD d (W ls x rs) = W (take d ls) x (take d rs)

Infinite Laziness



  

Modelling Repeated Computation
Comonads



  

● Remember monads?

class Monad m where
  return  ::  a -> m a
  (>>=)   ::  m a -> (a -> m b) -> m b

● A monad encapsulates a value (or values) a inside a context m
● The only way to access the value inside is through a continuation, that 

is, by binding it to an operation that accepts a value and produces an 
encapsulated value

Monads



  

● All monads are functors. To construct a monad from a functor:

class Functor m => Monad m where
  join   :: m (m a) -> m a
  return :: a -> m a
  (>>=)  :: m a -> (a -> m b) -> m b

● Now bind (>>=) can be defined in terms of fmap and join:

ma >>= f = join (fmap f ma)

Monads are Functors too



  

● Compare the list zipper with the monad:

extract::  W a -> a   return :: a -> m a
wrap   ::  W a -> W (W a)        join   :: m (m a) -> m a
apply  :: (W a -> a) -> W a -> W a    (>>=)  :: m a -> (a -> m b) -> m b

● The list zipper above is the opposite (or categorical dual) of a monad, 
and is called a comonad

● The comonad puts forward the value it contains, and requires a 
continuation to access the rest of its context, by extending it with an 
operation that takes an encapsulated value and produces a value 

Comonads



  

● The comonad lives in the Control.Comonad package
● Its ‘official’ function names are extract, duplicate (for wrap) and 
extend (for apply) 

● Its full definition derives a Functor
● There are many possible instances of a comonad, which are more 

efficient than infinite lists

Closing Thoughts



  

Possible Improvements?



  

● Some cellular automata live on toroidal worlds, which are not 
supported by a stream-like infinite list zipper

● Lists need to be traversed in order to save the results of an experiment, 
but lists are very inefficient to index – O(n) 

● Since the computation is always local, it could be done in parallel
● What would the automaton look like if it were started from a more 

random initial configuration?
● How would a list zipper extend to 2 dimensions? Can we use it to 

implement Game of Life?
● Can we create a comonad for any number of dimensions?



  John Conway’s Game of Life

What is Life?



  

In memoriam of John Horton Conway, FRS
● 26 December 1937 – 11 April 2020


